3.2.23 \(\int \frac {x (a+b \text {ArcSin}(c x))}{(d-c^2 d x^2)^{3/2}} \, dx\) [123]

Optimal. Leaf size=73 \[ \frac {a+b \text {ArcSin}(c x)}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {b \sqrt {1-c^2 x^2} \tanh ^{-1}(c x)}{c^2 d \sqrt {d-c^2 d x^2}} \]

[Out]

(a+b*arcsin(c*x))/c^2/d/(-c^2*d*x^2+d)^(1/2)-b*arctanh(c*x)*(-c^2*x^2+1)^(1/2)/c^2/d/(-c^2*d*x^2+d)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 73, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {4767, 212} \begin {gather*} \frac {a+b \text {ArcSin}(c x)}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {b \sqrt {1-c^2 x^2} \tanh ^{-1}(c x)}{c^2 d \sqrt {d-c^2 d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x*(a + b*ArcSin[c*x]))/(d - c^2*d*x^2)^(3/2),x]

[Out]

(a + b*ArcSin[c*x])/(c^2*d*Sqrt[d - c^2*d*x^2]) - (b*Sqrt[1 - c^2*x^2]*ArcTanh[c*x])/(c^2*d*Sqrt[d - c^2*d*x^2
])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 4767

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^(
p + 1)*((a + b*ArcSin[c*x])^n/(2*e*(p + 1))), x] + Dist[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p
], Int[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*
d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rubi steps

\begin {align*} \int \frac {x \left (a+b \sin ^{-1}(c x)\right )}{\left (d-c^2 d x^2\right )^{3/2}} \, dx &=\frac {a+b \sin ^{-1}(c x)}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {\left (b \sqrt {1-c^2 x^2}\right ) \int \frac {1}{1-c^2 x^2} \, dx}{c d \sqrt {d-c^2 d x^2}}\\ &=\frac {a+b \sin ^{-1}(c x)}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {b \sqrt {1-c^2 x^2} \tanh ^{-1}(c x)}{c^2 d \sqrt {d-c^2 d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 51, normalized size = 0.70 \begin {gather*} \frac {a+b \text {ArcSin}(c x)-b \sqrt {1-c^2 x^2} \tanh ^{-1}(c x)}{c^2 d \sqrt {d-c^2 d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x*(a + b*ArcSin[c*x]))/(d - c^2*d*x^2)^(3/2),x]

[Out]

(a + b*ArcSin[c*x] - b*Sqrt[1 - c^2*x^2]*ArcTanh[c*x])/(c^2*d*Sqrt[d - c^2*d*x^2])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.10, size = 194, normalized size = 2.66

method result size
default \(\frac {a}{c^{2} d \sqrt {-c^{2} d \,x^{2}+d}}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right )}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}-i\right )}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}+i\right )}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}\) \(194\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(3/2),x,method=_RETURNVERBOSE)

[Out]

a/c^2/d/(-c^2*d*x^2+d)^(1/2)-b*(-d*(c^2*x^2-1))^(1/2)/c^2/d^2/(c^2*x^2-1)*arcsin(c*x)-b*(-d*(c^2*x^2-1))^(1/2)
*(-c^2*x^2+1)^(1/2)/c^2/d^2/(c^2*x^2-1)*ln(I*c*x+(-c^2*x^2+1)^(1/2)-I)+b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(
1/2)/c^2/d^2/(c^2*x^2-1)*ln(I*c*x+(-c^2*x^2+1)^(1/2)+I)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(3/2),x, algorithm="maxima")

[Out]

(sqrt(c*x + 1)*sqrt(-c*x + 1)*c^3*d^2*integrate(x^2/(c^4*d^2*x^4 - c^2*d^2*x^2 + (c^2*d^2*x^2 - d^2)*e^(log(c*
x + 1) + log(-c*x + 1))), x) + arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)))*b/(sqrt(c*x + 1)*sqrt(-c*x + 1)*c^2
*d^(3/2)) + a/(sqrt(-c^2*d*x^2 + d)*c^2*d)

________________________________________________________________________________________

Fricas [A]
time = 2.14, size = 279, normalized size = 3.82 \begin {gather*} \left [\frac {{\left (b c^{2} x^{2} - b\right )} \sqrt {d} \log \left (-\frac {c^{6} d x^{6} + 5 \, c^{4} d x^{4} - 5 \, c^{2} d x^{2} + 4 \, {\left (c^{3} x^{3} + c x\right )} \sqrt {-c^{2} d x^{2} + d} \sqrt {-c^{2} x^{2} + 1} \sqrt {d} - d}{c^{6} x^{6} - 3 \, c^{4} x^{4} + 3 \, c^{2} x^{2} - 1}\right ) - 4 \, \sqrt {-c^{2} d x^{2} + d} {\left (b \arcsin \left (c x\right ) + a\right )}}{4 \, {\left (c^{4} d^{2} x^{2} - c^{2} d^{2}\right )}}, -\frac {{\left (b c^{2} x^{2} - b\right )} \sqrt {-d} \arctan \left (\frac {2 \, \sqrt {-c^{2} d x^{2} + d} \sqrt {-c^{2} x^{2} + 1} c \sqrt {-d} x}{c^{4} d x^{4} - d}\right ) + 2 \, \sqrt {-c^{2} d x^{2} + d} {\left (b \arcsin \left (c x\right ) + a\right )}}{2 \, {\left (c^{4} d^{2} x^{2} - c^{2} d^{2}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(3/2),x, algorithm="fricas")

[Out]

[1/4*((b*c^2*x^2 - b)*sqrt(d)*log(-(c^6*d*x^6 + 5*c^4*d*x^4 - 5*c^2*d*x^2 + 4*(c^3*x^3 + c*x)*sqrt(-c^2*d*x^2
+ d)*sqrt(-c^2*x^2 + 1)*sqrt(d) - d)/(c^6*x^6 - 3*c^4*x^4 + 3*c^2*x^2 - 1)) - 4*sqrt(-c^2*d*x^2 + d)*(b*arcsin
(c*x) + a))/(c^4*d^2*x^2 - c^2*d^2), -1/2*((b*c^2*x^2 - b)*sqrt(-d)*arctan(2*sqrt(-c^2*d*x^2 + d)*sqrt(-c^2*x^
2 + 1)*c*sqrt(-d)*x/(c^4*d*x^4 - d)) + 2*sqrt(-c^2*d*x^2 + d)*(b*arcsin(c*x) + a))/(c^4*d^2*x^2 - c^2*d^2)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x \left (a + b \operatorname {asin}{\left (c x \right )}\right )}{\left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*asin(c*x))/(-c**2*d*x**2+d)**(3/2),x)

[Out]

Integral(x*(a + b*asin(c*x))/(-d*(c*x - 1)*(c*x + 1))**(3/2), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Ch
eck [abs(t_

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x\,\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}{{\left (d-c^2\,d\,x^2\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a + b*asin(c*x)))/(d - c^2*d*x^2)^(3/2),x)

[Out]

int((x*(a + b*asin(c*x)))/(d - c^2*d*x^2)^(3/2), x)

________________________________________________________________________________________